2018 Dutch BxMO TST

1

We have $1000$ balls in $40$ different colours, $25$ balls of each colour. Determine the smallest $n$ for which the following holds: if you place the $1000$ balls in a circle, in any arbitrary way, then there are always $n$ adjacent balls which have at least $20$ different colours.

2

Let $\vartriangle ABC$ be a triangle of which the side lengths are positive integers which are pairwise coprime. The tangent in $A$ to the circumcircle intersects line $BC$ in $D$. Prove that $BD$ is not an integer.

3

Let $p$ be a prime number. Prove that it is possible to choose a permutation $a_1, a_2,...,a_p$ of $1,2,...,p$ such that the numbers $a_1, a_1a_2, a_1a_2a_3,..., a_1a_2a_3...a_p$ all have different remainder upon division by $p$.

4

In a non-isosceles triangle $\vartriangle ABC$ we have $\angle BAC = 60^o$. Let $D$ be the intersection of the angular bisector of $\angle BAC$ with side $BC, O$ the centre of the circumcircle of $\vartriangle ABC$ and $E$ the intersection of $AO$ and $BC$. Prove that $\angle AED + \angle ADO = 90^o$.

5

Let $n$ be a positive integer. Determine all positive real numbers $x$ satisfying $nx^2 +\frac{2^2}{x + 1}+\frac{3^2}{x + 2}+...+\frac{(n + 1)^2}{x + n}= nx + \frac{n(n + 3)}{2}$