2015 Dutch BxMO/EGMO TST

1

Let $m$ and $n$ be positive integers such that $5m+ n$ is a divisor of $5n +m$. Prove that $m$ is a divisor of $n$.

2

Given are positive integers $r$ and $k$ and an infinite sequence of positive integers $a_1 \le a_2 \le ...$ such that $\frac{r}{a_r}= k + 1$. Prove that there is a $t$ satisfying $\frac{t}{a_t}=k$.

3

Let $n \ge 2$ be a positive integer. Each square of an $n\times n$ board is coloured red or blue. We put dominoes on the board, each covering two squares of the board. A domino is called even if it lies on two red or two blue squares and colourful if it lies on a red and a blue square. Find the largest positive integer $k$ having the following property: regardless of how the red/blue-colouring of the board is done, it is always possible to put $k$ non-overlapping dominoes on the board that are either all even or all colourful.

4

In a triangle $ABC$ the point $D$ is the intersection of the interior angle bisector of $\angle BAC$ and side $BC$. Let $P$ be the second intersection point of the exterior angle bisector of $\angle BAC$ with the circumcircle of $\angle ABC$. A circle through $A$ and $P$ intersects line segment $BP$ internally in $E$ and line segment $CP$ internally in $F$. Prove that $\angle DEP = \angle DFP$.

5

Find all functions $f : R \to R$ satisfying $(x^2 + y^2)f(xy) = f(x)f(y)f(x^2 + y^2)$ for all real numbers $x$ and $y$.