A racing tournament has $12$ stages and $n$ participants. After each stage, all participants, depending on their place $k$, receive points $a_k$ (numbers $a_k$ are natural numbers and $a_1 > a_2 >... > a_n$). At what smallest $n$ can the organizer of the tournament choose numbers $a_1$, $...$ , $a_n$ so that after the penultimate stage for any possible distribution of places at least two participants had a chance to take first place?