The product $a_1 \cdot a_2 \cdot ... \cdot a_{100}$ is written on the board , where $a_1$, $a_2$, $ ... $, $a_{100}$, are natural numbers. Let's consider $99$ expressions, each of which is obtained by replacing one of the multiplication signs with an addition sign. It is known that the values of exactly $32$ of these expressions are even. What is the largest number of even numbers among $a_1$, $a_2$, $ ... $, $a_{100}$ could it be?