The function $f(x)$, defined on the entire real line, is known but that for any $a > 1 $ the function $f(x)+f(ax)$ is continuous on the entire line. Prove that $f(x)$ is also continuous along the entire line.
Source:
Tags: algebra, continuous, function
The function $f(x)$, defined on the entire real line, is known but that for any $a > 1 $ the function $f(x)+f(ax)$ is continuous on the entire line. Prove that $f(x)$ is also continuous along the entire line.