The maze is an $8 \times 8 $square, each cell contains $1 \times 1$ which has one of four arrows drawn (up, down, right, left). The upper side of the upper right cell is the exit from the maze.In the lower left cell there is a chip that, with each move, moves one square in the direction indicated by the arrow. After each move, the shooter in the cell in which there was just a chip rotates $90^o$ clockwise. If a chip must move, taking it outside the $8 \times 8$ square, it remains in place, and the arrow also rotates $90^o$ clockwise. Prove that sooner or later, the chip will come out of the maze.