Let us denote by $S(m)$ the sum of the digits of the natural number $m$. Prove that there are infinitely many positive integers $n$ such that $$S(3^n) \ge S(3^{n+1}).$$
Source:
Tags: number theory, sum of digits
Let us denote by $S(m)$ the sum of the digits of the natural number $m$. Prove that there are infinitely many positive integers $n$ such that $$S(3^n) \ge S(3^{n+1}).$$