A rectangle is drawn on checkered paper, the sides of which form angles of $45^o$ with the grid lines, and the vertices do not lie on the grid lines. Can an odd number of grid lines intersect each side of a rectangle?
Source:
Tags: combinatorics, combinatorial geometry, geometry, rectangle
A rectangle is drawn on checkered paper, the sides of which form angles of $45^o$ with the grid lines, and the vertices do not lie on the grid lines. Can an odd number of grid lines intersect each side of a rectangle?