Problem

Source:

Tags: geometry, combinatorics, combinatorial geometry



From a square board $1000\times 1000$ four rectangles $2\times 994$ have been cut off as shown on the picture. Initially, on the marked square there is a centaur - a piece that moves to the adjacent square to the left, up, or diagonally up-right in each move. Two players alternately move the centaur. The one who cannot make a move loses the game. Who has a winning strategy?