Problem

Source:

Tags: Chessboard, combinatorics, square table, Coloring



There is a $8\times 8$ table, drawn in a plane and painted in a chess board fashion. Peter mentally chooses a square and an interior point in it. Basil can draws any polygon (without self-intersections) in the plane and ask Peter whether the chosen point is inside or outside this polygon. What is the minimal number of questions suffcient to determine whether the chosen point is black or white?