Assume that $C$ is a right angle of triangle $ABC$ and $N$ is a midpoint of the semicircle, constructed on $CB$ as on diameter externally. Prove that $AN$ divides the bisector of angle $C$ in half.
Source:
Tags: angle bisector, right triangle, semicircle, geometry
Assume that $C$ is a right angle of triangle $ABC$ and $N$ is a midpoint of the semicircle, constructed on $CB$ as on diameter externally. Prove that $AN$ divides the bisector of angle $C$ in half.