Problem

Source:

Tags: icosahedron, 3D geometry, Centroid, geometry, sphere, combinatorial geometry



(a) A point $A$ is marked inside a sphere. Three perpendicular lines drawn through $A$ intersect the sphere at six points. Prove that the centre of gravity of these six points does not depend on the choice of such three lines. (b) An icosahedron with the centre $A$ is placed inside a sphere (its centre does not necessarily coincide with the centre of the sphere). The rays going from $A$ to the vertices of the icosahedron mark $12$ points on the sphere. Then the icosahedron is rotated about its centre. New rays mark new $12$ points on the sphere. Let $O$ and $N$ be the centres of mass of old and new points respectively. Prove that $O = N$.