Problem

Source:

Tags: Cyclic, obtuse, midpoint, incenter, geometry



In a triangle $ABC$ two points, $C_1$ and $A_1$ are marked on the sides $AB$ and $BC$ respectively (the points do not coincide with the vertices). Let $K$ be the midpoint of $A_1C_1$ and $I$ be the incentre of the triangle $ABC$. Given that the quadrilateral $A_1BC_1I$ is cyclic, prove that the angle $AKC$ is obtuse.