Problem

Source:

Tags: Sequence, algebra



Given an infinite sequence of numbers $a_1, a_2, a_3,...$ . For each positive integer $k$ there exists a positive integer $t = t(k)$ such that $a_k = a_{k+t} = a_{k+2t} =...$. Is this sequence necessarily periodic? That is, does a positive integer $T$ exist such that $a_k = a_{k+T}$ for each positive integer k?