Let $C(n)$ be the number of prime divisors of a positive integer $n$. (a) Consider set $S$ of all pairs of positive integers $(a, b)$ such that $a \ne b$ and $C(a + b) = C(a) + C(b)$. Is $S$ finite or infinite? (b) Define $S'$ as a subset of S consisting of the pairs $(a, b)$ such that $C(a+b) > 1000$. Is $S'$ finite or infinite?