Problem

Source:

Tags: sum of digits, number theory



Peter and Paul play the following game. First, Peter chooses some positive integer $a$ with the sum of its digits equal to $2012$. Paul wants to determine this number, he knows only that the sum of the digits of Peter’s number is $2012$. On each of his moves Paul chooses a positive integer $x$ and Peter tells him the sum of the digits of $|x - a|$. What is the minimal number of moves in which Paul can determine Peter’s number for sure?