Problem

Source:

Tags: combinatorics



A car rides along a circular track in the clockwise direction. At noon Peter and Paul took their positions at two different points of the track. Some moment later they simultaneously ended their duties and compared their notes. The car passed each of them at least $30$ times. Peter noticed that each circle was passed by the car $1$ second faster than the preceding one while Paul’s observation was opposite: each circle was passed $1$ second slower than the preceding one. Prove that their duty was at least an hour and a half long.