Let $C(n)$ be the number of prime divisors of a positive integer n. (For example, $C(10) = 2,C(11) = 1, C(12) = 2$). Consider set S of all pairs of positive integers $(a, b)$ such that $a\ne b$ and $C(a + b) = C(a) + C(b)$. Is set $S$ finite or infinite?