Problem

Source:

Tags: combinatorics, table



A checkered table consists of $2012$ rows and $k > 2$ columns. A marker is placed in a cell of the left-most column. Two players move the marker in turns. During each move, the player moves the marker by $1$ cell to the right, up or down to a cell that had never been occupied by the marker before. The game is over when any of the players moves the marker to the right-most column. However, whether this player is to win or to lose, the players are advised only when the marker reaches the second column from the right. Can any player secure his win?