On a highway, a pedestrian and a cyclist were going in the same direction, while a cart and a car were coming from the opposite direction. All were travelling at different constant speeds. The cyclist caught up with the pedestrian at $10$ o'clock. After a time interval, she met the cart, and after another time interval equal to the first, she met the car. After a third time interval, the car met the pedestrian, and after another time interval equal to the third, the car caught up with the cart. If the pedestrian met the car at $11$ o'clock, when did he meet the cart?