Problem

Source:

Tags: algebra, Product, Sum



There are five distinct real positive numbers. It is known that the total sum of their squares and the total sum of their pairwise products are equal. (a) Prove that we can choose three numbers such that it would not be possible to make a triangle with sides' lengths equal to these numbers. (b) Prove that the number of such triples is at least six (triples which consist of the same numbers in different order are considered the same).