Problem

Source:

Tags: number theory, divides, polynomial, divisible



Let $n$ be a positive integer. Prove that there exist integers $a_1, a_2,..., a_n$ such that for any integer $x$, the number $(... (((x^2 + a_1)^2 + a_2)^2 + ...)^2 + a_{n-1})^2 + a_n$ is divisible by $2n - 1$.