There are six points on the plane such that one can split them into two triples each creating a triangle. Is it always possible to split these points into two triples creating two triangles with no common point (neither inside, nor on the boundary)?
Source:
Tags: combinatorics, combinatorial geometry, points
There are six points on the plane such that one can split them into two triples each creating a triangle. Is it always possible to split these points into two triples creating two triangles with no common point (neither inside, nor on the boundary)?