There are $n$ red sticks and $n$ blue sticks. The sticks of each colour have the same total length, and can be used to construct an $n$-gon. We wish to repaint one stick of each colour in the other colour so that the sticks of each colour can still be used to construct an $n$-gon. Is this always possible if (a) $n = 3$, (b) $n > 3$ ?