Problem

Source:

Tags: combinatorics, time



Worms grow at the rate of $1$ metre per hour. When they reach their maximal length of $1$ metre, they stop growing. A full-grown worm may be dissected into two not necessarily equal parts. Each new worm grows at the rate of $1$ metre per hour. Starting with $1$ full-grown worm, can one obtain $10$ full-grown worms in less than $1$ hour?