What is the maximal number of checkers that can be placed on an $8\times 8$ checkerboard so that each checker stands on the middle one of three squares in a row diagonally, with exactly one of the other two squares occupied by another checker?
Source:
Tags: combinatorics
What is the maximal number of checkers that can be placed on an $8\times 8$ checkerboard so that each checker stands on the middle one of three squares in a row diagonally, with exactly one of the other two squares occupied by another checker?