Let $1 + 1/2 + 1/3 +... + 1/n = a_n/b_n$, where $a_n$ and $b_n$ are relatively prime. Show that there exist infinitely many positive integers $n$, such that $b_{n+1} < b_n$. (8)
Source:
Tags: number theory, Decreasing, Sequence
Let $1 + 1/2 + 1/3 +... + 1/n = a_n/b_n$, where $a_n$ and $b_n$ are relatively prime. Show that there exist infinitely many positive integers $n$, such that $b_{n+1} < b_n$. (8)