(a) Prove that from $2007$ given positive integers, one of them can be chosen so the product of the remaining numbers is expressible in the form $a^2 - b^2$ for some positive integers $a$ and $b$. (2) (b) One of $2007$ given positive integers is $2006$. Prove that if there is a unique number among them such that the product of the remaining numbers is expressible in the form $a^2 - b^2$ for some positive integers $a$ and $b$, then this unique number is $2006$. (2)