In the triangle $ABC$, ${{A}_{1}}$ and ${{C}_{1}} $ are the midpoints of sides $BC $ and $AB$ respectively. Point $P$ lies inside the triangle. Let $\angle BP {{C}_{1}} = \angle PCA$. Prove that $\angle BP {{A}_{1}} = \angle PAC $.
2017 Ukrainian Geometry Olympiad
grade IX
Point $M$ is the midpoint of the base $BC$ of trapezoid $ABCD$. On base $AD$, point $P$ is selected. Line $PM$ intersects line $DC$ at point $Q$, and the perpendicular from $P$ on the bases intersects line $BQ$ at point $K$. Prove that $\angle QBC = \angle KDA$.
Circles ${w}_{1},{w}_{2}$ intersect at points ${{A}_{1}} $ and ${{A}_{2}} $. Let $B$ be an arbitrary point on the circle ${{w}_{1}}$, and line $B{{A}_{2}}$ intersects circle ${{w}_{2}}$ at point $C$. Let $H$ be the orthocenter of $\Delta B{{A}_{1}}C$. Prove that for arbitrary choice of point $B$, the point $H$ lies on a certain fixed circle.
Let $ABCD$ be a parallelogram and $P$ be an arbitrary point of the circumcircle of $\Delta ABD$, different from the vertices. Line $PA$ intersects the line $CD$ at point $Q$. Let $O$ be the center of the circumcircle $\Delta PCQ$. Prove that $\angle ADO = 90^o$.
grade X
same as grade IX p1 - 1
same as grade IX p3 - 2
On the hypotenuse $AB$ of a right triangle $ABC$, we denote a point $K$ such that $BK = BC$. Let $P$ be a point on the perpendicular from the point $K$ to line $CK$, equidistant from the points $K$ and $B$. Let $L$ be the midpoint of $CK$. Prove that line $AP$ is tangent to the circumcircle of $\Delta BLP$.
In the right triangle $ABC$ with hypotenuse $AB$, the incircle touches $BC$ and $AC$ at points ${{A}_{1}}$ and ${{B}_{1}}$ respectively. The straight line containing the midline of $\Delta ABC$ , parallel to $AB$, intersects its circumcircle at points $P$ and $T$. Prove that points $P,T,{{A}_{1}}$ and ${{B}_{1}}$ lie on one circle.
grade XI
same as grade IX p1 - 1
On the side $AC$ of a triangle $ABC$, let a $K$ be a point such that $AK = 2KC$ and $\angle ABK = 2 \angle KBC$. Let $F$ be the midpoint of $AC$, $L$ be the projection of $A$ on $BK$. Prove that $FL \bot BC$.
same as grade IX p4 - 3
Let $AD$ be the inner angle bisector of the triangle $ABC$. The perpendicular on the side $BC$ at the point $D$ intersects the outer bisector of $\angle CAB$ at point $I$. The circle with center $I$ and radius $ID$ intersects the sides $AB$ and $AC$ at points $F$ and $E$ respectively. $A$-symmedian of $\Delta AFE$ intersects the circumcircle of $\Delta AFE$ again at point $X$. Prove that the circumcircles of $\Delta AFE$ and $\Delta BXC$ are tangent.