Given a triangle $ABC$ with its incircle touching sides $BC,CA,AB$ at $A_1,B_1,C_1$, respectively. Let the median from $A$ intersects $B_1C_1$ at $M$. Show that $A_1M\perp BC$.
2018 Kürschák Competition
Given a prime number $p$ and let $\overline{v_1},\overline{v_2},\dotsc ,\overline{v_n}$ be $n$ distinct vectors of length $p$ with integer coordinates in an $\mathbb{R}^3$ Cartesian coordinate system. Suppose that for any $1\leqslant j<k\leqslant n$, there exists an integer $0<\ell <p$ such that all three coordinates of $\overline{v_j} -\ell \cdot \overline{v_k} $ is divisible by $p$. Prove that $n\leqslant 6$.
In a village (where only dwarfs live) there are $k$ streets, and there are $k(n-1)+1$ clubs each containing $n$ dwarfs. A dwarf can be in more than one clubs, and two dwarfs know each other if they live in the same street or they are in the same club (there is a club they are both in). Prove that is it possible to choose $n$ different dwarfs from $n$ different clubs (one dwarf from each club), such that the $n$ dwarfs know each other!