Problem

Source: Moldavian MO 2006

Tags: function, limit, real analysis, real analysis unsolved



Function $f: [a,b]\to\mathbb{R}$, $0<a<b$ is continuous on $[a,b]$ and differentiable on $(a,b)$. Prove that there exists $c\in(a,b)$ such that \[ f'(c)=\frac1{a-c}+\frac1{b-c}+\frac1{a+b}. \]