Let $0 \le a \le b \le c \le 3$ Prove : $(a-b)(a^2-9)+(a-c)(b^2-9)+(b-c)(c^2-9) \le 36$
Problem
Source: MDA
Tags: inequalities, calculus
strong_boy
29.12.2022 04:20
Any solution?
strong_boy
29.12.2022 22:21
BUMP!!!!!
TerrificChameleon
29.12.2022 22:58
Bump......
We can expand the left-hand side of the inequality as follows:
$(a-b)(a^2-9)+(a-c)(b^2-9)+(b-c)(c^2-9) = a^2(a-b)-9(a-b)+a(b^2-9)-c(b^2-9)+b(c^2-9)-c^2(b-c)$
This expression can be simplified as:
$a^2(a-b)+b^2(b-c)+c^2(c-a)$
Now, we can apply the Trivial Inequality to each term:
$a^2(a-b) + b^2(b-c) + c^2(c-a) \le (a-b)^2 + (b-c)^2 + (c-a)^2$
This reduces to:
$(a-b)^2 + (b-c)^2 + (c-a)^2 \le 36$
Since all the variables are non-negative, we have:
$(a-b) + (b-c) + (c-a) \le 6$
This means that $|a-b| + |b-c| + |c-a| \le 6$. Since the absolute value of each term is non-negative, we can drop the absolute values and get:
$a-b + b-c + c-a \le 6$
This simplifies to:
$a + c \le b + 6$
Since $a \le b$ and $b \le c$, we have:
$a + c \le 2b \le b + 6$
Thus, $b \ge 3$, which means that $b = 3$.
Substituting this back into the inequality, we get:
$(a-3)(a^2-9)+(a-c)(9-9)+(3-c)(c^2-9) \le 36$
This reduces to:
$(a-3)(a^2-9) \le 36$
Since $a \le 3$, the inequality is satisfied for all possible values of $a$.
Therefore, we have proved that $(a-b)(a^2-9)+(a-c)(b^2-9)+(b-c)(c^2-9) \le 36$ for all non-negative values of $a$, $b$, and $c$ such that $0 \le a \le b \le c \le 3$.
strong_boy
30.12.2022 01:26
TerrificChameleon wrote: Bump......
We can expand the left-hand side of the inequality as follows:
$(a-b)(a^2-9)+(a-c)(b^2-9)+(b-c)(c^2-9) = a^2(a-b)-9(a-b)+a(b^2-9)-c(b^2-9)+b(c^2-9)-c^2(b-c)$
This expression can be simplified as:
$a^2(a-b)+b^2(b-c)+c^2(c-a)$
Now, we can apply the Trivial Inequality to each term:
$a^2(a-b) + b^2(b-c) + c^2(c-a) \le (a-b)^2 + (b-c)^2 + (c-a)^2$
This reduces to:
$(a-b)^2 + (b-c)^2 + (c-a)^2 \le 36$
Since all the variables are non-negative, we have:
$(a-b) + (b-c) + (c-a) \le 6$
This means that $|a-b| + |b-c| + |c-a| \le 6$. Since the absolute value of each term is non-negative, we can drop the absolute values and get:
$a-b + b-c + c-a \le 6$
This simplifies to:
$a + c \le b + 6$
Since $a \le b$ and $b \le c$, we have:
$a + c \le 2b \le b + 6$
Thus, $b \ge 3$, which means that $b = 3$.
Substituting this back into the inequality, we get:
$(a-3)(a^2-9)+(a-c)(9-9)+(3-c)(c^2-9) \le 36$
This reduces to:
$(a-3)(a^2-9) \le 36$
Since $a \le 3$, the inequality is satisfied for all possible values of $a$.
Therefore, we have proved that $(a-b)(a^2-9)+(a-c)(b^2-9)+(b-c)(c^2-9) \le 36$ for all non-negative values of $a$, $b$, and $c$ such that $0 \le a \le b \le c \le 3$.
Do you have any solution with integral?
ap246
30.12.2022 01:57
I don't there is any solution that involves an integral.