Problem

Source: 2020 Simon Marais Mathematics Competition B1

Tags: linear algebra, matrix



Let $\mathcal{M}$ be the set of $5\times 5$ real matrices of rank $3$. Given a matrix in $\mathcal{M}$, the set of columns of $A$ has $2^5-1=31$ nonempty subsets. Let $k_A$ be the number of these subsets that are linearly independent. Determine the maximum and minimum values of $k_A$, as $A$ varies over $\mathcal{M}$. The rank of a matrix is the dimension of the span of its columns.