Problem

Source: Simon Marais 2019 A4

Tags: Sequences, series, calculus, real analysis



Suppose $x_1,x_2,x_3,\dotsc$ is a strictly decreasing sequence of positive real numbers such that the series $x_1+x_2+x_3+\cdots$ diverges. Is it necessary true that the series $\sum_{n=2}^{\infty}{\min \left\{ x_n,\frac{1}{n\log (n)}\right\} }$ diverges?