Source: Moldova National MO 2008, 12 Grade, Problem 8 (Day 2)
Tags: integration, trigonometry, logarithms, real analysis, real analysis unsolved
Evaluate $ \displaystyle I = \int_0^{\frac\pi4}\left(\sin^62x + \cos^62x\right)\cdot \ln(1 + \tan x)\text{d}x$.
Let $ x = \frac {\pi}{4} - \theta \Longrightarrow dx = - \theta ,\ 2x = \frac {\pi}{2} - 2\theta$,
$ I = \int_{\frac {\pi}{4}}^0 (\cos ^ 6 2\theta + \sin ^ 6 2\theta)\ln \left [1 + \tan \left(\frac {\pi}{4} - \theta \right)\right] d( - \theta)$
$ = \int_0^{\frac {\pi}{4}} (\cos ^ 6 2\theta + \sin ^ 6 2\theta)\ln \frac {2}{1 + \tan \theta} d\theta$
$ = (\ln 2)\int_0^{\frac {\pi}{4}} (\cos ^ 6 2\theta + \sin ^ 6 2\theta)\ d\theta - I$
$ 2I = (\ln 2)\int_0^{\frac {\pi}{4}} (\cos ^ 6 2\theta + \sin ^ 6 2\theta)\ d\theta$
Here, we have :
$ \sin ^ 6 \theta + \cos ^ 6 \theta = (\sin ^ 2 \theta + \cos ^ 2 \theta)^3 - 3\sin ^ 2 \theta \cos ^ 2 \theta (\sin ^ 2 \theta + \cos ^ 2 \theta)$
$ = 1 - 3\sin ^ 2 \theta \cos ^ 2 \theta$
$ = 1 - \frac {3}{4}\sin ^ 2 2\theta$
$ = 1 - \frac {3}{4}\cdot \frac {1 - \cos 4\theta}{2}$
$ = \frac {1}{8}(5 + 3\cos 4\theta)$
$ \therefore 2I = \frac {\ln 2}{8}\int_0^{\frac {\pi}{4}} (5 + 3\cos 8\theta)\ d\theta = \frac {5}{32}\pi \ln 2$, yielding $ I = \frac {5}{64}\pi \ln2$.