Problem

Source: VJIMC 2017, Category II, Problem 4

Tags: number theory



A positive integer $t$ is called a Jane's integer if $t = x^3+y^2$ for some positive integers $x$ and $y$. Prove that for every integer $n \ge 2$ there exist infinitely many positive integers $m$ such that the set of $n^2$ consecutive integers $\{m+1,m+2,\dotsc,m+n^2\}$ contains exactly $n + 1$ Jane's integers.