Problem

Source: Moldova MO 2007 12th grade day I problem 4

Tags: calculus, integration, inequalities, function, calculus computations



If the function $f\colon [1,2]\to R$ is such that $\int_{1}^{2}f(x) dx=\frac{73}{24}$, then show that there exists a $x_{0}\in (1;2)$ such that \[x_{0}^{2}<f(x_{0})<x_{0}^{3}\] [Edit: $f$ is continuous]