If ${a, b}$ and $c$ are positive real numbers, prove that \begin{align*} a ^ 3b ^ 6 + b ^ 3c ^ 6 + c ^ 3a ^ 6 + 3a ^ 3b ^ 3c ^ 3 &\ge{ abc \left (a ^ 3b ^ 3 + b ^ 3c ^ 3 + c ^ 3a ^ 3 \right) + a ^ 2b ^ 2c ^ 2 \left (a ^ 3 + b ^ 3 + c ^ 3 \right)}. \end{align*} (Montenegro).
2015 Balkan MO
May 5th
Let $\triangle{ABC}$ be a scalene triangle with incentre $I$ and circumcircle $\omega$. Lines $AI, BI, CI$ intersect $\omega$ for the second time at points $D, E, F$, respectively. The parallel lines from $I$ to the sides $BC, AC, AB$ intersect $EF, DF, DE$ at points $K, L, M$, respectively. Prove that the points $K, L, M$ are collinear. (Cyprus)
A committee of $3366$ film critics are voting for the Oscars. Every critic voted just an actor and just one actress. After the voting, it was found that for every positive integer $n \in \left \{1, 2, \ldots, 100 \right \}$, there is some actor or some actress who was voted exactly $n$ times. Prove that there are two critics who voted the same actor and the same actress. (Cyprus)
Prove that among $20$ consecutive positive integers there is an integer $d$ such that for every positive integer $n$ the following inequality holds $$n \sqrt{d} \left\{n \sqrt {d} \right \} > \dfrac{5}{2}$$ where by $\left \{x \right \}$ denotes the fractional part of the real number $x$. The fractional part of the real number $x$ is defined as the difference between the largest integer that is less than or equal to $x$ to the actual number $x$. (Serbia)