2015 Azerbaijan JBMO TST

Day 1

1

With the conditions $a,b,c\in\mathbb{R^+}$ and $a+b+c=1$, prove that \[\frac{7+2b}{1+a}+\frac{7+2c}{1+b}+\frac{7+2a}{1+c}\geq\frac{69}{4}\]

3

Acute-angled $\triangle{ABC}$ triangle with condition $AB<AC<BC$ has cimcumcircle $C^,$ with center $O$ and radius $R$.And $BD$ and $CE$ diametrs drawn.Circle with center $O$ and radius $R$ intersects $AC$ at $K$.And circle with center $A$ and radius $AD$ intersects $BA$ at $L$.Prove that $EK$ and $DL$ lines intersects at circle $C^,$.

2

$A=1\cdot4\cdot7\cdots2014$.Find the last non-zero digit of $A$ if it is known that $A\equiv 1\mod3$.

4

Prove that there are not intgers $a$ and $b$ with conditions, i) $16a-9b$ is a prime number. ii) $ab$ is a perfect square. iii) $a+b$ is also perfect square.

Day 2

1

Let $x,y$ and $z$ be non-negative real numbers satisfying the equation $x+y+z=xyz$. Prove that $2(x^2+y^2+z^2)\geq3(x+y+z)$.

2

All letters in the word $VUQAR$ are different and chosen from the set $\{1,2,3,4,5\}$. Find all solutions to the equation \[\frac{(V+U+Q+A+R)^2}{V-U-Q+A+R}=V^{{{U^Q}^A}^R}.\]

3

Let $ABC$ be a triangle such that $AB$ is not equal to $AC$. Let $M$ be the midpoint of $BC$ and $H$ be the orthocenter of triangle $ABC$. Let $D$ be the midpoint of $AH$ and $O$ the circumcentre of triangle $BCH$. Prove that $DAMO$ is a parallelogram.

Day 3

1

$a,b,c\in\mathbb{R^+}$ and $a^2+b^2+c^2=48$. Prove that \[a^2\sqrt{2b^3+16}+b^2\sqrt{2c^3+16}+c^2\sqrt{2a^3+16}\le24^2\]

2

There are some real numbers on the board (at least two). In every step we choose two of them, for example $a$ and $b$, and then we replace them with $\frac{ab}{a+b}$. We continue until there is one number. Prove that the last number does not depend on which order we choose the numbers to erase.

3

There is a triangle $ABC$ that $AB$ is not equal to $AC$.$BD$ is interior bisector of $\angle{ABC}$($D\in AC$) $M$ is midpoint of $CBA$ arc.Circumcircle of $\triangle{BDM}$ cuts $AB$ at $K$ and $J,$ is symmetry of $A$ according $K$.If $DJ\cap AM=(O)$, Prove that $J,B,M,O$ are cyclic.

4

Find all integer solutions to the equation $x^2=y^2(x+y^4+2y^2)$ .

Additional Exam

1

Let $a,b,c$ be positive real numbers. Prove that \[\left((3a^2+1)^2+2\left(1+\frac{3}{b}\right)^2\right)\left((3b^2+1)^2+2\left(1+\frac{3}{c}\right)^2\right)\left((3c^2+1)^2+2\left(1+\frac{3}{a}\right)^2\right)\geq 48^3\]

2

Find all non-negative solutions to the equation $2013^x+2014^y=2015^z$