In an acute triangle $ABC$, let $D$, $E$, $F$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $BC$, $CA$, $AB$, respectively, and let $P$, $Q$, $R$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $EF$, $FD$, $DE$, respectively. Prove that $p\left(ABC\right)p\left(PQR\right) \ge \left(p\left(DEF\right)\right)^{2}$, where $p\left(T\right)$ denotes the perimeter of triangle $T$ . Proposed by Hojoo Lee, Korea
Problem
Source: IMO Shortlist 2005, problem G7, created by Hojoo Lee
Tags: geometry, inequalities, circumcircle, IMO Shortlist
17.08.2006 07:07
Notice that $p(ABC) = 8R \prod cos{\frac{A}{2}}$, $p(DEF) = 8R \prod sinA$, $p(PQR) = 4R \prod sinA$.
20.08.2006 04:10
treegoner wrote: Notice that ........ $\boxed{\ p(PQR) = 4R \prod sinA\ }$. Why ? I found $\boxed{\ p(PQR)=R\sum \sin 2A\sqrt{1-\sin 2B\sin 2C}\ }\ \ !$.
20.08.2006 08:39
Sorry! I misread the problem . I will spend some time for this problem later.
20.08.2006 09:43
Amir.S wrote: In an acute triangle $ABC$, let $D, E, F, P, Q, R$ be the feet of perpendiculars from $A, B, C, A, B, C$ to $BC, CA, AB, EF, FD, DE,$ respectively. Prove that $p(ABC)p(PQR) \ge p(DEF)^{2}$, where $p(T )$ denotes the perimeter of triangle $T$ . $BC=a$, $QR= \cos A \sqrt{a^{2}-4bc \cos B \cos C \sin^{2}A}$, $EF=a \cos A$, so $BC \cdot QR \geq EF^{2}\iff a \cos A \sqrt{a^{2}-4bc \cos B \cos C \sin^{2}A}\geq a^{2}\cos^{2}A$ $\iff \sqrt{a^{2}-4bc \cos B \cos C \sin^{2}A}\geq a \cos A \iff a^{2}\sin^{2}A \geq 4bc \cos B \cos C \sin^{2}A$ $\iff a^{2}\geq 4bc \cos B \cos C$, which is true as $a=b \cos C+c \cos B$. So $p(ABC)p(PQR)=(BC+CA+AB)(QR+RP+PQ)$ $\geq (\sqrt{BC \cdot QR}+\sqrt{CA \cdot RP}+\sqrt{AB \cdot PQ})^{2}\geq (EF+FD+DE)^{2}=p(DEF)^{2}$.
20.08.2006 10:16
This is G7 in ISL 2005. It was proposed by me The key idea is to use the inequality Sung-yoon stated. Check out the proof in the new edition of my weblication 'Topics in Inequalities - Theorems and Techniques' which is now availabe at my new homepage at http://ultrametric.googlepages.com/tin2006new.pdf In fact, more is true. Look at the solutions in the official IMO short list book.
14.04.2009 04:13
25.02.2011 03:40
(dnkywin informed me that this stronger result is true.)
25.02.2011 06:56
Edit: clear.
26.05.2014 07:46
We note that $\angle{PAF}=\angle{QBF}=90-C$ so the lines $AP,BQ,CR$ concur at the circumcenter $O$ of $\triangle{ABC}$.Thus we note that $POQF$ is a cyclic quadrilateral with $OF$ as its diameter,so $PQ=OF\sin2C \ge d(O,AB)\sin2C =R\cosh\sin2C$.We get $PR$ and $QR$ analogously.We also note that $p(ABC)=2R\sum{sinA}$ and $p(DEF)=R\sum{sin2A}$(Note that the pedal triangle has circumradius $\frac{R}{2}$ so applying sine rule will make the fact clear).Thus the problem is equivalent to showing that $2 \sum{sinA} \sum{sin2CcosC} \ge (\sum{sin2A})^2$. $\Leftrightarrow (\sum{(\sqrt{2sinA})^2})(\sum{(\sqrt{sin2AcosA})^2}) \ge (\sum{sin2A})^2$ which is obvious by Cauchy.It can easily be seen that equality holds if and only if $\triangle{ABC}$ is equilateral.
04.06.2014 20:20
Surprisingly simple for a G7.
26.08.2015 01:13
Sorry ... That was mistaken
25.12.2015 19:54
It's about time. Lemma 1: In a triangle $ABC$, we have $\sin A + \sin B + \sin C \ge \sin 2A + \sin 2B+ \sin 2C$ Proof: Sum to product yields $\frac{\sin 2A + \sin 2B}{2} = \sin(A+B) \cos (A-B)$. Now just sum up cyclically. Lemma 2: In a triangle $ABC$ with excircles touching sides $BC, CA, AB$ at $D, E, F$, respectively, the perimeter of triangle $ABC$ is at most twice that of triangle $DEF$ (USA TSTST 2011, P7). Proof: Consider the projection of $EF$ onto side $BC$. Suppose $E$ is projected to point $E'$ and $F$ is projected to point $F'$ on side $BC$. Basic triangle facts yield that $EF \ge E'F'=a-(s-a)(\cos B + \cos C)$. So we simply want \[ \sum_{cyc} a_(s-a)(\cos B + \cos C) \ge \frac{a+b+c}{2} \]. This rearranges to \[ a+b+c \ge 2a \cos A + 2b \cos B + 2c \cos C \]By LoS, it remains to show \[ \sin A + \sin B + \sin C \ge \sin 2A + \sin 2B + \sin 2C \]Observe that sum to product yields $\frac{\sin 2A + \sin 2B}{2} = \sin(A+B) \cos (A-B) \le \sin C$, from which summing yields the desired. First, I claim $p(ABC) \ge 2 p(DEF)$. By extended LoS, we have $EF=2R \cos A \sin A$. Thus we want to show that \[ 2R \sin A + 2R \sin B + 2R \sin C \ge 2 (2R \sin A \cos A + 2R \sin B \cos B + 2R \sin C \cos C) \]. Cancelling $2R$ and using $2\sin A \cos A = \sin 2A$, the inequality reduces to Lemma 1 . Next, I claim $p(PQR) \ge \frac{1}{2} p(DEF)$. Let's shift our reference frame to triangle $DEF$. Observe that $P, Q, R$ are just the touch points of the $D, E, F$ excenters (which are $A, B, C$ respectively) in triangle $DEF$. Then this inequality is true by Lemma 2 . Now multiplying our two claims, we have $p(ABC) p(PQR) \ge (p(DEF))^2$, as requested.
07.03.2017 23:42
Quite straight-forward for a G7 Note that $P, Q, R$ are the projections of the circumcenter $O$ (of $\triangle ABC$) onto the lines $EF, FD, DE$ respectively. Secondly, $$QR=OD\cdot \sin \angle EDF=OD\cdot \sin 2A \ge 2R\sin A\cos^2A=BC\cos^2A.$$Finally, we observe that $\frac{EF}{BC}=\cos A$ so $$BC\cdot QR \ge EF^2$$and the given inequality follows from the CS inequality. Equality holds for equilateral triangles only.
08.08.2020 22:26
Project $Q,R$ onto $BC$ at $Q',R'$. Note that $Q'D=\cos^2 A\cdot BD$, and $R'D=\cos^2 A\cdot CD$, so $QR\ge Q'R'=BC\cos^2 A$. Also, by similar triangles, $EF=BC\cdot \frac{AE}{BE}=BC\cos A$. So, $$QR\cdot BC\ge Q'R'\cdot BC=BC^2\cos^2 A =EF^2$$Now, by Cauchy Schwarz, $$(PQ+QR+RP)(AB+BC+CA)\ge (P'Q'+Q'R'+R'P')(AB+BC+CA)\ge (DE+EF+FD)^2$$as desired.
21.10.2020 03:09
AMN300 wrote:
$$a \sin\frac{A}{2}+b \sin\frac{B}{2}+c \sin\frac{C}{2}\geq \frac{a+b+c}{2}\geq a \cos A + b \cos B + c \cos C$$$$\sqrt{1+sinBsinC}\cdot sinA+\sqrt{1+sinCsinA}\cdot sinB+\sqrt{1-sinAsinB}\cdot sinC> sinA+ sinB+ sinC$$
Attachments:

30.12.2020 20:55
The key idea is the same, but I saw it by spiral similarity Main claim. $BC\cdot QR\ge EF^2$, and the analogous results hold. Proof. Let $M$ be the midpoint of $BC$. [asy][asy] defaultpen(fontsize(10)); size(220); pair A=dir(70); pair C=dir(-30); pair B=dir(210); pair D=foot(A,B,C); pair E=foot(B,A,C); pair F=foot(C,B,A); pair P=foot(A,F,E); pair Q=foot(B,D,F); pair R=foot(C,D,E); pair M=midpoint(B--C); dot("$A$", A, dir(A)); dot("$B$", B, dir(B)); dot("$C$", C, dir(C)); dot("$D$", D, dir(D)); dot("$E$", E, dir(E)); dot("$F$", F, dir(F)); dot("$P$", P, dir(P)); dot("$Q$", Q, dir(Q)); dot("$R$", R, dir(E)); dot("$M$", M, dir(M)); draw(A--B--C--cycle); draw(D--F); draw(D--E); draw(B--Q); draw(M--Q, dashed+blue); draw(M--R, dashed+blue); draw(M--F, dashed+blue); draw(M--E, dashed+blue); draw(E--F, blue); draw(R--Q, blue); draw(C--R); draw(circumcircle(D,E,F), yellow); [/asy][/asy] As $M$ is the midpoint of the arc $\widehat{EMF}$ on the nine-point circle and $Q$, $R$ are the points in which the $E$ and $F-$excircles touch $FD$ and $DE$, respectively, we know that $M$ is the center of the spiral similarity that sends $QR$ to $EF$. Thus, $$\dfrac{QR}{EF}=\dfrac{QM}{MF}=\dfrac{BM\cdot \frac{\sin{\angle MBQ}}{\sin{\angle BQM}}}{\frac{BC}{2}}=\dfrac{\cos{A}}{\sin{\angle BQM}}\ge\cos{A}=\dfrac{EF}{BC}$$Hence, $BC\cdot QR\ge EF^2$, as desired. Finally, by Cauchy-Schwarz Inequality and the above claim, $$p(ABC)\cdot p(PQR)=(BC+CA+AB)(QR+RP+PQ)\ge (\sqrt{BC\cdot QR}+\sqrt{CA\cdot RP}+\sqrt{AB\cdot PQ})^2\ge(EF+FD+DE)^2=p(DEF)^2$$and we are done. $\square$