Problem

Source: INDIA IMOTC-2006 TST1 PROBLEM-2; IMO Shortlist 2005 problem N3

Tags: algebra, polynomial, number theory, composite number, prime numbers, IMO Shortlist, Hi



Let $ a$, $ b$, $ c$, $ d$, $ e$, $ f$ be positive integers and let $ S = a+b+c+d+e+f$. Suppose that the number $ S$ divides $ abc+def$ and $ ab+bc+ca-de-ef-df$. Prove that $ S$ is composite.