Problem

Source:

Tags: inequalities, inequalities unsolved



Let $a,b,c$ be positive real numbers such that \[ a+b+c\geq abc. \] Prove that at least two of the inequalities \[ \frac{2}{a}+\frac{3}{b}+\frac{6}{c}\geq6,\;\;\;\;\;\frac{2}{b}+\frac{3}{c}+\frac{6}{a}\geq6,\;\;\;\;\;\frac{2}{c}+\frac{3}{a}+\frac{6}{b}\geq6 \] are true.