Prove that there exists a succession $a_1, a_2, ... , a_k, ...$, where each $a_i$ is a digit ($a_i \in (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)$ ) and $a_0=6$, such that, for each positive integrer $n$, the number $x_n=a_0+10a_1+100a_2+...+10^{n-1}a_{n-1}$ verify that $x_n^2-x_n$ is divisible by $10^n$.
Problem
Source: Cono Sur 1993-problem 5
Tags: induction, modular arithmetic, number theory unsolved, number theory