Problem

Source: Cono Sur 1993-problem 2

Tags: geometry unsolved, geometry



Consider a circle with centre $O$, and $3$ points on it, $A,B$ and $C$, such that $\angle {AOB}< \angle {BOC}$. Let $D$ be the midpoint on the arc $AC$ that contains the point $B$. Consider a point $K$ on $BC$ such that $DK \perp BC$. Prove that $AB+BK=KC$.