Let $A, B$ and $C$ be three non-collinear points and $E$ ($\ne B$) an arbitrary point not in the straight line $AC$. Construct the parallelograms $ABCD$ and $AECF$. Prove that $BE \parallel DF$.
Source: Cono Sur 1991-problem 1
Tags: geometry, parallelogram, geometry unsolved
Let $A, B$ and $C$ be three non-collinear points and $E$ ($\ne B$) an arbitrary point not in the straight line $AC$. Construct the parallelograms $ABCD$ and $AECF$. Prove that $BE \parallel DF$.