Problem

Source: Italian tst 2006 / 5

Tags: modular arithmetic, Euler, number theory unsolved, number theory



Let $n$ be a positive integer, and let $A_{n}$ be the the set of all positive integers $a\le n$ such that $n|a^{n}+1$. a) Find all $n$ such that $A_{n}\neq \emptyset$ b) Find all $n$ such that $|{A_{n}}|$ is even and non-zero. c) Is there $n$ such that $|{A_{n}}| = 130$?