Problem

Source:

Tags: geometry, power of a point, radical axis, geometry unsolved



The circles $\gamma_1$ and $\gamma_2$ intersect at the points $Q$ and $R$ and internally touch a circle $\gamma$ at $A_1$ and $A_2$ respectively. Let $P$ be an arbitrary point on $\gamma$. Segments $PA_1$ and $PA_2$ meet $\gamma_1$ and $\gamma_2$ again at $B_1$ and $B_2$ respectively. a) Prove that the tangent to $\gamma_{1}$ at $B_{1}$ and the tangent to $\gamma_{2}$ at $B_{2}$ are parallel. b) Prove that $B_{1}B_{2}$ is the common tangent to $\gamma_{1}$ and $\gamma_{2}$ iff $P$ lies on $QR$.