Let $a,b,c,d$ be four non-negative numbers satisfying \[ a+b+c+d=1. \] Prove the inequality \[ a \cdot b \cdot c + b \cdot c \cdot d + c \cdot d \cdot a + d \cdot a \cdot b \leq \frac{1}{27} + \frac{176}{27} \cdot a \cdot b \cdot c \cdot d. \]
Problem
Source: IMO Shortlist 1993, Vietnam 2
Tags: inequalities, function, four variables, IMO Shortlist, 4-variable inequality
26.03.2006 04:30
http://www.kalva.demon.co.uk/short/soln/sh9326.html
20.08.2007 21:48
We can also solve this by Lagrange Method(a little similar to the solution given in KALVA but i think Lagrange Method is better) that i've posted about in my Blog: http://www.mathlinks.ro/weblog_entry.php?t=163432 let: $ f = abc+bcd+cda+dab-\frac{176}{27}abcd$ $ g = a+b+c+d-1 = 0$ We have to prove that always we have: $ f\leq\frac{1}{27}$ Let: $ L = f-\mu g = abc+bcd+cda+dab-\frac{176}{27}abcd-\mu a-\mu b-\mu c-\mu d+\mu$ $ \frac{\partial L}{\partial a}= bc+cd+db-\frac{176}{27}bcd-\mu = 0$ $ \frac{\partial L}{\partial b}= ac+cd+da-\frac{176}{27}acd-\mu = 0$ $ \frac{\partial L}{\partial c}= ab+bd+da-\frac{176}{27}bad-\mu = 0$ $ \frac{\partial L}{\partial d}= bc+ca+ab-\frac{176}{27}bca-\mu = 0$ $ \Longrightarrow\mu = bc+cd+db-\frac{176}{27}bcd = ac+cd+da-\frac{176}{27}acd = ab+bd+da-\frac{176}{27}bad = bc+ca+ab-\frac{176}{27}bca$ Now notice that: $ bc+cd+db-\frac{176}{27}bcd = ac+cd+da-\frac{176}{27}acd\Longrightarrow(b-a)\left(c+d-\frac{176}{27}cd\right) = 0$ by the same way we'll have the following equations too: $ (b-c)\left(a+d-\frac{176}{27}ad\right) = 0$ $ (b-d)\left(a+c-\frac{176}{27}ca\right) = 0$ $ (a-c)\left(b+d-\frac{176}{27}bd\right) = 0$ $ (a-d)\left(c+b-\frac{176}{27}cb\right) = 0$ $ (c-d)\left(a+b-\frac{176}{27}ab\right) = 0$ By solving these six equations we must have $ a = b = c = d(\text{Why?})$ and so by the condition $ a+b+c+d = 1$ we'll have $ a = b = c = d =\frac{1}{4}$ and: $ f(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}) =\frac{1}{4^{3}}+\frac{1}{4^{3}}+\frac{1}{4^{3}}+\frac{1}{4^{3}}-\frac{176}{27}\cdot\frac{1}{4^{4}}=\frac{1}{27}$ And we're done!
20.08.2007 23:22
Beside Lagrange Method, we can have some more elementary solution, as (1), By SMV theorem, see here (hungkhtn) http://www.mathlinks.ro/Forum/viewtopic.php?t=113248 (2), By AC (or generally known as UMV for Vietnamese) theorem, see Mathematics Reflection (VASC) (3), By EV theorem, see CRUX or Gazeta mathematica (VASC) (4), By Convex function, which is the most elementary way,
29.09.2007 06:47
Letting $ f(a;b;c;d) = abc + bcd + cda + dab - \frac {176abcd}{27}$ $ = ab(c + d - kcd) + cd(a + b)$$ (k = \frac {176}{27})$ Hence we hope prove that $ f(a;b;c;d) \leq f(t;t;c;d)$ where $ t = \frac {a + b}{2}$.Since $ 0 \leq ab \leq t^2$ we need to prove $ c + d - kcd \geq 0$ Otherwise,if $ c + d - kcd \leq 0$,then we have $ f(a;b;c;d) = ab(c + d - kcd) + cd(a + b) \leq cd(a + b) \leq \frac {1}{27}$ Thus,we may assume that: $ f(a;b;c;d) \leq f(\frac {a + b}{2};\frac {a + b}{2};c;d)$ Put $ s = \frac {c + d}{2}$ we have: $ f(a;b;c;d) \leq f(t;t;c;d) \leq f(t;t;s;s) = f(t;s;t;s) \leq f(\frac {t + s}{2};\frac {t + s}{2};t;s) \leq f( \frac {t + 2}{2}; \frac {t + 2}{2}; \frac {t + 2}{2}; \frac {t + 2}{2}) = \frac {1}{27}$ Done! http://www.mathlinks.ro/Forum/viewtopic.php?t=168355
21.12.2007 09:05
And the ineq with n=5? PS: I think that the LHS is not enough! It can be symmetric with the variables!
Attachments:

28.12.2007 07:33
hmm! Noone solves it!
28.12.2007 11:16
ricardokaka wrote: hmm! Noone solves it! Sorry ricardokaka but it is one of problems in Mathematics and Youth Magazine, for the moment we are not dicussing anything about above inequality. In my opinion, mixing variable method kills it easily
06.03.2011 22:42
orl wrote: Let $a,b,c,d$ be four non-negative numbers satisfying \[ a+b+c+d=1. \] Prove the inequality \[ a \cdot b \cdot c + b \cdot c \cdot d + c \cdot d \cdot a + d \cdot a \cdot b \leq \frac{1}{27} + \frac{176}{27} \cdot a \cdot b \cdot c \cdot d. \] We can prove it by simple MV-method: Let $a=\min\{a,b,c,d\}$ and $f(a,b,c,d)=1+176abcd-27\sum_{cyc}abc$. Hence, $a\leq\frac{1}{4}$ and $f(a,b,c,d)-f\left(a,\frac{b+c+d}{3},\frac{b+c+d}{3},\frac{b+c+d}{3}\right)=$ $=176a\left(bcd-\left(\frac{b+c+d}{3}\right)^3\right)-27\left(a\left(bc+bd+cd-3\left(\frac{b+c+d}{3}\right)^2\right)+bcd-\left(\frac{b+c+d}{3}\right)^3\right)=$ $=\left(\left(\frac{b+c+d}{3}\right)^3-bcd\right)(27-176a)+9a(b^2+c^2+d^2-bc-bd-cd)=$ $=\left(\left(\frac{b+c+d}{3}\right)^3-bcd\right)(27-176a)+\frac{9a}{b+c+d}\cdot(b^3+c^3+d^3-3bcd)\geq$ $=\left(\left(\frac{b+c+d}{3}\right)^3-bcd\right)(27-176a)+\frac{9a}{b+c+d}\cdot\frac{27}{4}\left(\left(\frac{b+c+d}{3}\right)^3-bcd\right)=$ $=\left(\left(\frac{b+c+d}{3}\right)^3-bcd\right)\left(27-176a+\frac{243a}{4(1-a)}\right)=$ $=\left(\left(\frac{b+c+d}{3}\right)^3-bcd\right)\cdot\frac{704a^2-569a+108}{4(1-a)}\geq0$ for $a\leq\frac{1}{4}$. Id est, it remains to prove that $f(a,b,b,b)\geq0$, which after homogenization is equivalent to: $(a+3b)^4+176ab^3\geq27(a+3b)(3ab^2+b^3)$, which is $a(a+14b)(a-b)^2\geq0$. Done!
07.03.2011 06:55
nice proof arqady,mv is effective.but the computing is terrible,
07.03.2011 08:33
I think it's IMO shortlist. I have a nice proof. Let $a+b=x, ab=m, c+d=y, cd=n$. then $x+y=1$ we will prove that $nx+my \leq 1/27 + (176/27) mn$ But above inequality is linear function for $m,n$, and $m$ is arbitrary numbers such that $0 \leq m \leq x^2/4$, $n$ is arbitrary numbers such that $0 \leq n \leq y^2/4$. So, It's enough to prove the inequality where $m=0\; or\; x^2/4$, $n=0 \;or\; y^2/4$ It's easy!
07.03.2011 22:40
By the same way (it's really the same way!) we can prove the following generalization. Let $\sum_{i=1}^na_i=1$, where $a_i>0$, $n\geq3$, $k_n=n^2(n-1)^{n-1}-n^n$ and $m_n=(n-1)^{n-1}$. Prove that: \[\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\leq\frac{1+k_na_1a_2...a_n}{m_na_1a_2...a_n}\] For $n=2$ this inequality is an equality.