Problem

Source: Imo Shortlist 1993, Romania 3

Tags: algebra, Sequence, Inequality, IMO Shortlist



Let $c_1, \ldots, c_n \in \mathbb{R}$ with $n \geq 2$ such that \[ 0 \leq \sum^n_{i=1} c_i \leq n. \] Show that we can find integers $k_1, \ldots, k_n$ such that \[ \sum^n_{i=1} k_i = 0 \] and \[ 1-n \leq c_i + n \cdot k_i \leq n \] for every $i = 1, \ldots, n.$

HIDE: Another formulation: Let $x_1, \ldots, x_n,$ with $n \geq 2$ be real numbers such that \[ |x_1 + \ldots + x_n| \leq n. \] Show that there exist integers $k_1, \ldots, k_n$ such that \[ |k_1 + \ldots + k_n| = 0. \] and \[ |x_i + 2 \cdot n \cdot k_i| \leq 2 \cdot n -1 \] for every $i = 1, \ldots, n.$ In order to prove this, denote $c_i = \frac{1+x_i}{2}$ for $i = 1, \ldots, n,$ etc.