Let $n\in\mathbb{N}^*$. Prove that \[ \lim_{x\to 0}\frac{ \displaystyle (1+x^2)^{n+1}-\prod_{k=1}^n\cos kx}{ \displaystyle x\sum_{k=1}^n\sin kx}=\frac{2n^2+n+12}{6n}. \]
Source: Moldavian MO 2006
Tags: limit, trigonometry, algebra proposed, algebra
Let $n\in\mathbb{N}^*$. Prove that \[ \lim_{x\to 0}\frac{ \displaystyle (1+x^2)^{n+1}-\prod_{k=1}^n\cos kx}{ \displaystyle x\sum_{k=1}^n\sin kx}=\frac{2n^2+n+12}{6n}. \]